WELCOME

First Annual PhyNexus Users Group Symposium

August 27, 2014
South San Francisco, California
Why PhyNexus?

- The personal response
- The PhyNexus corporate mission
 - We apply analytical solutions to biological problems
 - Chemistry for biology and automation
 - Applied to Drug Discovery / Drug Development
 - We install and support solutions, not just products
- Solutions are enabled by technology that we develop - PhyNexus has 26 patents on various technologies and more than 16 more in prosecution.
Chromatography on a Pipette Tip

Douglas Gjerde
PhyNexus, Inc.
August 27, 2014
Chromatography on a Pipette Tip

• An affinity column positioned at the end of a pipette/robotic tip
• Chromatographic concepts and principles used but in a novel manner
Conventional Chromatography

- Mobile phase is pumped down through the system with a pump in a uni-directional flow.
- Sample is loaded through an injector at the top of the column.
- Chromatographic separation and elution is a top down flow through the column.
- Collection of purified sample is at bottom of column.
Pipette Tip Chromatography

- Sample and mobile phase enter and exit at the column tip.
- All liquid flow is back and forth flow. This includes sample loading, chromatographic development and elution.
- This is still chromatography, just non-traditional chromatography.
How does chromatography on a pipette tip work?

• Physical/mechanical Properties
 – Control the flow of sample and buffers
 – Control the volume of buffers needed

• Separation Chemistry Properties
 – Must operate with back and forth flow
 • Sample loading
 • Separation development
 • Sample elution/recovery
Physical/Mechanical Properties

• Thin frits
 – Frits are thinner than the bead diameter
 – Virtually no column dead volume

• Hydrophilic frits
 – Will wet and draw up even a single drop of liquid to cover surface of the frit.
 – Hydrogen bonding of water to itself and to the frit.
Hydrogen Bonding of Water

• Intra hydrogen bonding: small insects can actually walk on top of water because of a water surface “skin” produced by water hydrogen bonding

• Inter hydrogen bonding: hydrogen bonding of water with a hydrophilic frit also produces a “skin” with water. This skin is a barrier to air passing through the pipette tip column
The Pipette Tip Column Frit Air Barrier

- Pipette tip with column bed
- Frit air barrier
- Liquid passes freely
- Air does not enter

Tip Concentrating Effect™
Piston Position and Fluid Flow

• Flow through the column is controlled by pressure and vacuum above the column bed.
 – Frit itself has zero backpressure
 – But flow only starts after a threshold pressure or vacuum is reached
 – Flow stops when no liquid is left in front of the frit. Even with a positive pressure or vacuum above the bed, air does not enter the column

• Software and firmware programming used to control of pipette/syringe piston position
 – Used to produce predictable vacuum and pressure above the column bed
 – Piston position and movement does not match liquid flow (it is not like pipetting liquids)
Fine control flow of fluid flow through a pipette tip column
Fine control flow of fluid flow through a pipette tip column

Starting drop

Final drop
Separation Chemistry Properties

- Separation selectivity in chromatography is controlled by isotherm chemistry.
- Isotherms show the mobile phase chemical conditions
 - at which materials are adsorbed to the column media and
 - at which materials are dissolved in solution.
Gradual Isotherm Chemistry

0% adsorbed on resin
100% adsorbed on resin

Increasing Eluent Strength

A
B
C
Sharp Isotherm Chemistry

Increasing Eluent Strength

0 % adsorbed on resin

100 % adsorbed on resin

A

B

C
Sharp Isotherms are Difficult to Achieve

- Biomolecules interact slowly with affinity columns – slow kinetics.
- The problem is exasperated with small columns.
 - Spin columns
 - Plates
- Time of interaction may be insufficient and is difficult to control.
Chromatography on a Pipette Tip

- Time of interaction is easily controlled with back and forth flow.
- Time of interaction is sufficient with several cycles
 - Active transport of sample molecules to resin functional groups
 - Multiple chances of interaction
- Sufficient time is defined as time necessary to drive the equilibrium interaction of sample and column to completion.
Capture Efficiency is Related to Residence Time

Capture efficiency of IgG as a function of residence time for 5, 10, 40, 160 µL bed Pro A columns.
Capture Efficiency is Related to Number of Cycles

Capture of lysozyme using 200+ 5 µL bed Cation Exchange column. Equilibrium binding is achieved with 5 cycles of capture.
Chromatography on a Pipette Tip

- Since interaction is complete to equilibrium in back and forth flow, separations are:
 - Independent of column diameter
 - Independent on packing uniformity
 - Independent on amount of resin in the column
 - Independent of flow rate
 - Only dependent on column and mobile phase chemistry.
- Result: A novel, powerful type of chromatography.
- Mimics very large diameter traditional column chromatography where the residence times are long.
Back-and-forth flow make columns scaling predictable

- Linear relationship between resin bed volume and recovery
- Measured dynamic binding capacity of 29μg/μL is equivalent to manufacturer’s specifications
- Resin performance is not compromised by miniaturization
- Conditions developed can be applied to all column bed sizes, including large scale manufacturing
PhyTip Columns Concentrate the Sample

Compare purification of an antibody protein with a 200 µL bed Pierce NAb spin column and a 20 µL bed PhyTip column.

Spin column 20 µL bed column
Spin Column vs. 20 µL PhyTip 200+ ProA column

L = ladder
A = hIgG
LY = E. coli lysate
S = A + LY
E = elution from
Triplicate samples

Tip Concentrating Effect™
Chromatography on a Pipette Tip
Tip Concentrating Effect

• Question: What happens when you decrease the column size to 5 µL from 20 µL?
• Answer: The PhyTip Column Tip Concentrating Effect becomes stronger.
• The Tip Concentrating Effect is counter intuitive:
 – To increase the concentration of recovered protein, use a smaller column
 – 5 µL bed is a very small column bed but will give very high sample concentrations
Tip Concentrating Effect increases using a 5 µL bed PhyTip column

Spin column
20 µL bed column
5 µL bed column
Spin Column vs. 20 µL PhyTip and 5 µL 200+ ProA column

L = ladder
A = hIgG
LY = E. coli lysate
S = A + LY
E = elution from
Triplicate samples
Antibody recovery from ProA Spin column and 20 µL PhyTip® column vs. 5 µL ProA PhyTip® column
HPLC data

<table>
<thead>
<tr>
<th></th>
<th>Vol. (uL)</th>
<th>mAU²</th>
<th>[] (mg/mL)</th>
<th>Mass (ug)</th>
<th>% rec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pierce-1</td>
<td>434</td>
<td>190.3</td>
<td>0.08</td>
<td>36</td>
<td>71</td>
</tr>
<tr>
<td>Pierce-2</td>
<td>440</td>
<td>170.5</td>
<td>0.07</td>
<td>30</td>
<td>59</td>
</tr>
<tr>
<td>Pierce-3</td>
<td>441</td>
<td>163.6</td>
<td>0.06</td>
<td>27</td>
<td>55</td>
</tr>
<tr>
<td>20uL-1</td>
<td>74</td>
<td>690.4</td>
<td>0.46</td>
<td>35</td>
<td>69</td>
</tr>
<tr>
<td>20uL-2</td>
<td>69</td>
<td>704.2</td>
<td>0.47</td>
<td>33</td>
<td>66</td>
</tr>
<tr>
<td>20uL-3</td>
<td>72</td>
<td>762.2</td>
<td>0.52</td>
<td>38</td>
<td>75</td>
</tr>
<tr>
<td>5uL-1</td>
<td>15</td>
<td>272.2</td>
<td>1.45</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>5uL-2</td>
<td>16</td>
<td>259.2</td>
<td>1.35</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>5uL-3</td>
<td>17</td>
<td>273.2</td>
<td>1.45</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>
Chromatography on a Pipette Tip
Tip Concentrating Effect

- Operates with any “on/off type” high selectivity resin (sharp isotherm chemistry)
 - ProA/ProG
 - IMAC
 - Streptavidin
 - Ion exchange
 - Ion pairing / reverse phase
 - Any column/analyte chemistry where the isotherms are sharp i.e. they change rapidly and completely with changes in solvent composition
- Match bed size to sample concentration and volume to load up the bed
This Meeting

- How is PhyNexus technology used?
- What’s new?
- What’s on the horizon?