PhyTip® Normal Phase Resin columns are designed for the specific enrichment of polar compounds. These PhyTip columns are especially useful in oligosaccharide mapping and identification analysis of glycoproteins. High resolution tools such as HPLC and capillary electrophoresis are required for the separations of these complicated structures; however, detection must be enhanced through the use of fluorescent dye labels. PhyTip Normal Phase Resin columns are the perfect solution for high throughput, reproducible sample dye removal prior to identification and quantification.

  • Normal phase tips function to separate and enrich polar compounds such as oligosaccharides.
  • They are the only high throughput, automatable, oligosaccharide purification solution commercially available.
  • Similar to the PhyTip affinity columns, the resin of choice is positioned between two inert screens that maintain the resin bed at the base of the column.
  • An excellent solution for excess dye removal prior to CE or HPLC analysis of oligosaccharides.

Normal Phase Resin columns with our proprietary Dual Flow Chromatography provide complete antibody binding and high final concentrations. PhyTip columns are compatible with most 8, 12, and 96-channel automation liquid handling robots including Agilent TechnologiesBeckman CoulterDynamic DevicesPerkin ElmerHamilton, and Tecan.

PhyNexus PhyTip Normal Phase

Normal Phase Resin tips are available in tip volumes (µL) of 200|300|500|1000 and resin volumes (µL) of 5|10|20|40|80|160|320 depending upon robot configuration.


PhyTip Normal Phase 1 columns PhyTip

Normal Phase 1 columns have been optimized for use with specific PhyNexus reagents and instrument flow rates/volumes as shown below. This information was collected using the MEA Personal Purification System.

These columns are ideal for the purification of fluorescently-labeled glycans required the removal of excess dye. PhyNexus recommends using the following buffers:

Conditioning Solution – 20% Acetonitrile

Equilibration Solution – 95% Acetonitrile

Capture Solution – Dilute 200μL samples five fold by adding 800μL 95% acetonitrile.

Wash Solution – 95% Acetonitrile

Elution Solution – 20% Acetonitrile


PhyTip columns are unique capture, purification and enrichment tools from PhyNexus designed for small volume protein sample preparation. PhyTip Normal Phase 1 columns are designed for the purification of glycans, oligosaccharides and complex carbohydrates. PhyTip columns are available for a variety of liquid handling platforms and contain specific affinity resins for application specific requirements. Samples for purification and enrichment must be clear and free from particulate matter. It is highly recommended to centrifuge samples and use the clear supernatant only, prior to use with PhyTip columns.


PhyTip Columns

PhyTip columns are available in two formats, 200+ with a recommended maximum sample volume of 200 μL and 1000+ with a recommended maximum volume of 1000 μL. For each of the PhyTip column formats there are a number of different resin volumes available. Each PhyTip column has been designed for maximum efficiency of capture and elution of the specific protein(s) of interest when using the specified protocol.

Shipping and Storage

Each pack of PhyTip columns has been manufactured and QC’d to the highest standards and shipped in retainer boxes that maintain the integrity of the specific affinity resin within each PhyTip column. This product is shipped at ambient temperatures, but on receipt should be stored in a standard laboratory refrigerator between 4 and 8◦C.

  • Do NOT freeze or store frozen.
  • When not in use, keep the lid of the box closed and sealed, store in the refrigerator.
  • PhyTip Normal Phase 1 columns are NOT stored with additives when shipped from PhyNexus.

Glycan Clean-up and Custom Oligosaccharide Columns are available for these robotic systems.



Twoplex 12/13 C 6 aniline stable isotope and linkage specific sialic acid labelling 2D-LC-MS workflow for quantitative N -glycomics
Albrecht S, Mittermayr S, Smith J, Martín S, Doherty M, Bones J
Publication: PROTEOMICS, 2016
doi: 10.1002/pmic.201600304

CP40 from Corynebacterium pseudotuberculosis is an endo-β-N-acetylglucosaminidase
Shadnezhad A, Naegeli A, Collin M, Dalziel M, Crispin M, Scanlan C, Zitzmann N, Elliott T, Cresswell P, Wilson I, Dwek R, Gornik O, Pavić T, Lauc G, Kim Y, Varki A, Deisenhofer J, Arnold J, Wormald M, Sim R, Rudd P, Dwek R, Lux A, Scanlan C, Nimmerjahn F, Subedi G, Barb A, Garbe J, Plummer T, Tarentino A, Sjögren J, Okumura C, Collin M, Nizet V, Hollands A, Collin M, Svensson M, Sjöholm A, Jensenius J, Sjöbring U, Olsén A, Lood C, Allhorn M, Lood R, Gullstrand B, Olin A, Ronnblom L, Benkhoucha M, Molnarfi N, Santiago-Raber M, Weber M, Merkler D, Collin M, Yang R, Otten M, Hellmark T, Collin M, Björck L, Zhao M, Timmeren M, Veen B, Stegeman C, Petersen A, Hellmark T, Collin M, Allhorn M, Briceno J, Baudino L, Lood C, Olsson M, Izui S, Albert H, Collin M, Dudziak D, Ravetch J, Nimmerjahn F, Collin M, Shannon O, Björck L, Seyffert N, Guimarães A, Pacheco L, Portela R, Bastos B, Dorella F, Trost E, Ott L, Schneider J, Schröder J, Jaenicke S, Goesmann A, Walker J, Jackson H, Eggelton D, Meeusen E, Wilson M, Brandon M, Walker J, Trost E, Al-Dilaimi A, Papavasiliou P, Schneider J, Viehoever P, Burkovski A, Pučić M, Knezevic A, Vidic J, Adamczyk B, Novokmet M, Polasek O, Collin M, Fischetti V, Henrissat B, Davies G, Karlsson M, Stenlid J, Shadnezhad A, Naegeli A, Sjögren J, Adamczyk B, Leo F, Allhorn M, Baird G, Fontaine M, Dorella F, Pacheco L, Seyffert N, Portela R, Meyer R, Miyoshi A, Droppa-Almeida D, Vivas W, Silva K, Rezende A, Simionatto S, Meyer R, Silva J, Droppa-Almeida D, Borsuk S, Azevedo V, Portela R, Miyoshi A, Rückert C, Eimer J, Winkler A, Tauch A, Sjögren J, Struwe W, Cosgrave E, Rudd P, Stervander M, Allhorn M, Raju T, Briggs J, Borge S, Jones A, Sjögren J, Cosgrave E, Allhorn M, Nordgren M, Björk S, Olsson F, Trimble R, Tarentino A, Dixon E, Claridge J, Harvey D, Baruah K, Yu X, Vesiljevic S, Hacker E, Antunes C, Mattos-Guaraldi A, Burkovski A, Tauch A
Publication: BMC Microbiology, 2016 vol: 16 (1) pp: 261
doi: 10.1186/s12866-016-0884-3

Process performance and product quality in an integrated continuous antibody production process
Karst D, Steinebach F, Soos M, Morbidelli M
Publication: Biotechnology and Bioengineering, 2016
doi: 10.1002/bit.26069ISSN

EndoSd: an IgG glycan hydrolyzing enzyme in Streptococcus dysgalactiae subspecies dysgalactiae
Shadnezhad A, Naegeli A, Sjögren J, Adamczyk B, Leo F, Allhorn M, Karlsson N, Jensen A, Collin M
Publication: Future Microbiology, 2016 pp: fmb.16.14
doi: 10.2217/fmb.16.14

Mass Spectrometric-Based Stable Isotopic 2-Aminobenzoic Acid Glycan Mapping for Rapid Glycan Screening of Biotherapeutics
Prien J, Prater B, Qin Q, Cockrill S
Publication: Analytical Chemistry, 2010 vol: 82 (4) pp: 1498-1508
doi: 10.1021/ac902617t

Fluorescent isotope-coded affinity tag (FCAT) I: Design and synthesis
Rivera-Monroy Z, Bonn G, Guttman A
Publication: Bioorganic Chemistry, 2008 vol: 36 (6) pp: 299-311
doi: 10.1016/j.bioorg.2008.08.005

Rapid N-glycan release from glycoproteins using immobilized PNGase F microcolumns
Szigeti M, Bondar J, Gjerde D, Keresztessy Z, Szekrenyes A, Guttman A
Publication: Journal of Chromatography B, 2016
doi: 10.1016/j.jchromb.2016.02.006

The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody.
Costa A, Withers J, Rodrigues M, McLoughlin N, Henriques M, Oliveira R, Rudd P, Azeredo J
Publication: SpringerPlus, 2013 vol: 2 (1) pp: 25
doi: 10.1186/2193-1801-2-25

Orthogonal Technologies for NISTmAb N-Glycan Structure Elucidation and Quantitation
Prien J, Stöckmann H, Albrecht S, Martin S, Varatta M, Furtado M, Hosselet S, Wang M, Formolo T, Rudd P, Schiel J, State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization Volume 2. Biopharmaceutical Characterization: The NISTmAb Case Study
Publication: American Chemical Society, 2015 vol: 1201 pp: 185-235 SE – 4
doi: 10.1021/bk-2015-1201.ch004

Boronic acid lectin affinity chromatography (BLAC). 2. Affinity micropartitioning-mediated comparative glycosylation profiling
Monzo A, Olajos M, De Benedictis L, Rivera Z, Bonn G, Guttman A
Publication: Analytical and Bioanalytical Chemistry, 2008 vol: 392 (1-2) pp: 195-201
doi: 10.1007/s00216-008-2257-8

Sample Preparation for N-Glycosylation Analysis of Therapeutic Monoclonal Antibodies by Electrophoresis
Szekrényes Á, Partyka J, Varadi C, Krenkova J, Foret F, Guttman A, Horvath Laboratory of Bioseparation Sciences
Publication: Microchip Capillary Electrophoresis Protocols SE – 16, Editor: Van Schepdael A, Springer New York, 2015 vol: 1274 pp: 183-195
doi: 10.1007/978-1-4939-2353-3_16

Comparative glycoprofiling of HIV gp120 immunogens by capillary electrophoresis and MALDI mass spectrometry
Guttman M, Váradi C, Lee K, Guttman A, University of Washington, Horvath Laboratory of Bioseparation Sciences, University of Pannonia
Publication: ELECTROPHORESIS, 2015 vol: 36 (11-12) pp: 1305-1313
doi: 10.1002/elps.201500054

Automated sample preparation facilitated by PhyNexus MEA purification system for oligosaccharide mapping of glycoproteins
Prater B, Anumula K, Hutchins J, Inhibitex
Publication: Analytical Biochemistry, 2007 vol: 369 (2) pp: 202-209
doi: 10.1016/j.ab.2007.07.011

Galactosyltransferase 4 is a major control point for glycan branching in N-linked glycosylation
McDonald A, Hayes J, Bezak T, Guchowska S, Cosgrave E, Struwe W, Stroop C, Kok H, van de Laar T, Rudd P, Tipton K,  Davey G, Trinity College Dublin, National Institute for BioProcessing Research and Training (NIBRT), Merck S
Publication: Journal of Cell Science, 2014 vol: 127 (23) pp: 5014-5026
doi: 10.1242/jcs.151878

High-throughput immunoglobulin G N-glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry
Prater B, Connelly H, Qin Q, Cockrill S, Amgen
Publication: Analytical Biochemistry, 2009 vol: 385 (1) pp: 69-79
doi: 10.1016/j.ab.2008.10.023


Analysis of human serum glycoproteins by boronic acid – lectin affinity chromatography (BLAC) and multi-capillary gel electrophoresis
A. Monzo1, M. Olajos1,2, L. DeBenedictis1, P. Hajos2, G. Bonn1, A. Guttman1 (1Horvath Laboratory of Bioseparation Sciences, Austria; 2University of Pannonia, Hungary)

Screening for Chromatographic Success and Failure on Small Scale
W. Gillette (NCI/SAIC-Frederick)

Space is the Place: Using DOE and Microscale Techniques to Define Process Boundaries
M. Wenger (Merck & Co.)

Development of Small-Scale, High Throughput, Chromatographic Protein Purification
K. Valente1, M. Wenger2, J. Shanter1, S. Sagar1, J. Konz1 (1Merck Biopurification Development, 2Merck Bioprocess and Bioanalytical Research)

A flexible platform for automated high-performance protein purification using micro scale separation technology
J. Lambert, M. Anderson, D. Gjerde, L. Nguyen (PhyNexus)

Innovative Solutions for Automated Protein and Nucleic Acid Purification
Lee Hoang, PhyNexus, Inc., PhyNexus Webinar

Automated, High Throughput Protein Purification and Sample Prep Using PhyTip Columns for Therapeutic Leads Screening and Process Development
Lee Hoang, PhD., PhyNexus, Inc., The 5th Annual Proteins Congress 2012, London

Optimization of Protein Purification Using Small-Scale Separation Columns
Chris Suh, PhD., PhyNexus, Inc., Protein Therapeutics Discovery and Development

PhyNexus Users Group Symposium 2014
Douglas Gjerde, PhyNexus
Lee Hoang, PhyNexus
Tyson Bowen PacBio

Select your resin, robotic system, tip and resin volume and see the results in the table below.

Normal Phase 1 PhyTip Columns